
classical missing data strategies

imputation (filling in values)

Mean/Median/Mode Imputation

 - Description: Replace missing values with the
mean, median, or mode of the non-missing
values in a column.

 - Best for: Numeric data without strong skew.

 import pandas as pd
 from sklearn.impute import SimpleImputer

 # Assuming df is a pandas DataFrame
 mean_imputer =
SimpleImputer(strategy="mean") # For mean
imputation
 median_imputer =
SimpleImputer(strategy="median") # For
median imputation
 mode_imputer =
SimpleImputer(strategy="most_frequent") #
For mode imputation

 df['column_name'] =
mean_imputer.fit_transform(df[['column_name']]
)

K-Nearest Neighbors (KNN) Imputation

 Uses the values of the k-nearest neighbors to
impute missing values.

 - Best for: Small to medium datasets where
similar instances are expected to have similar
values.

 from sklearn.impute import KNNImputer

 knn_imputer = KNNImputer(n_neighbors=5)
 df_imputed = knn_imputer.fit_transform(df)

Constant Imputation

 - Description: Replace missing values with a
constant value, like 0 or "Unknown" for
categorical data.

 - Best for: Data where missing values
represent a meaningful category.

 constant_imputer =
SimpleImputer(strategy="constant", fill_value=0)
 df['column_name'] =
constant_imputer.fit_transform(df[['column_nam
e']])

Multivariate Imputation by Chained Equations
(MICE)

 Iteratively imputes missing values by
modeling each variable with missing values as a
function of other variables.

 - Best for: Data with a complex correlation
structure.

 import pandas as pd
 from sklearn.experimental import
enable_iterative_imputer
 from sklearn.impute import IterativeImputer

 iterative_imputer = IterativeImputer()
 df_imputed =
iterative_imputer.fit_transform(df)

Regression Imputation

Regresses missing values based on other
available features.

 - Best for: Data where the relationship
between variables can be accurately modeled.

 from sklearn.linear_model import
LinearRegression

 # Example for single column imputation
 df_non_missing =
df[df['column_name'].notnull()]
 df_missing = df[df['column_name'].isnull()]

 X_train =
df_non_missing.drop('column_name', axis=1)
 y_train = df_non_missing['column_name']
 X_missing = df_missing.drop('column_name',
axis=1)

 regressor = LinearRegression()
 regressor.fit(X_train, y_train)
 df.loc[df['column_name'].isnull(),
'column_name'] = regressor.predict(X_missing)

Use a model that can handle missing data

Decision Tree

Handle missing values by considering available
data during splits

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import
train_test_split
from sklearn.metrics import accuracy_score

Sample data with missing values
X = np.array([[1, 2], [np.nan, 4], [3, 5]])
y = np.array([0, 1, 0])

Split the data
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_state=42)

Initialize and train the Decision Tree
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)

Predict
y_pred = clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test,
y_pred))

Random Forest

handles missing values by using surrogate
splits. This means it finds alternative splitting
rules when a value is missing.

import numpy as np
from sklearn.ensemble import
RandomForestClassifier
from sklearn.model_selection import
train_test_split
from sklearn.metrics import accuracy_score

Sample data with missing values
X = np.array([[1, 2], [np.nan, 4], [3, 5], [6, np.nan],
[8, 7], [np.nan, 10]])
y = np.array([0, 1, 0, 1, 0, 1])

Split the data
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_state=42)

Initialize and train the Random Forest
clf = RandomForestClassifier()
clf.fit(X_train, y_train)

Predict
y_pred = clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test,
y_pred))

XGBoost

Handles missing values natively, learning the
best direction during training

import xgboost as xgb
from sklearn.model_selection import
train_test_split
from sklearn.metrics import accuracy_score

Sample data with missing values
X = np.array([[1, 2], [np.nan, 4], [3, 5]])
y = np.array([0, 1, 0])

Split the data
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_state=42)

Initialize and train XGBoost
model = xgb.XGBClassifier()
model.fit(X_train, y_train)

Predict
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test,
y_pred))

ksml4.com/mindmap

https://ksml4.com/mindmap/

