classical missing data strategies

classical missing data strategies		
imputation (filling in values)		Use a model that can handle missing data
Mean/Median/Mode Imputation # Assum mean_im SimpleImputation SimpleImputation Mean/Median/Mode Imputation # Assum mean_in SimpleImputation Median SimpleImputation Median SimpleImputation Median SimpleImputation Median	<pre>e: Numeric data without strong skew. pandas as pd earn.impute import SimpleImputer hing df is a pandas DataFrame hputer = uter(strategy="mean") # For mean imputer = uter(strategy="median") # For putation hputer = uter(strategy="most_frequent") # mputation mn_name'] =</pre>	Handle missing values by considering available data during splits from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Sample data with missing values X = np.array([[1, 2], [np.nan, 4], [3, 5]]) y = np.array([0, 1, 0]) # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and train the Decision Tree clf = DecisionTreeClassifier() clf.fit(X_train, y_train) # Predict
K-Nearest Neighbors (KNN) Imputation K-Nearest Neighbors (KNN) Imputation Constant Imputati	iter.fit_transform(df[['column_name']] ses the values of the k-nearest neighbors to ute missing values. Best for: Small to medium datasets where lar instances are expected to have similar res. rom sklearn.impute import KNNImputer nn_imputer = KNNImputer(n_neighbors=5) If_imputed = knn_imputer.fit_transform(df) ce missing values with a or "Unknown" for re missing values ul category.	<pre># Predict y_pred = clf.predict(X_test) print("Accuracy.", accuracy_score(y_test, y_pred)) handles missing values by using surrogate splits. This means it finds alternative splitting rules when a value is missing. import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Sample data with missing values X = np.array([[1, 2], [np.nan, 4], [3, 5], [6, np.nan], [8, 7], [np.nan, 10]]) y = np.array([[0, 1, 0, 1, 0, 1]) # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and train the Random Forest clf = RandomForestClassifier() clf.fit(X_train, y_train) # Predict y_pred = clf.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred))</pre>
Regression Imputation – between variables ca Regression Imputation – LinearRegression # Example for sin df_non_missing = df[df['column_name	<pre>structure. import pandas as pd from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer iterative_imputer = IterativeImputer() df_imputed = iterative_imputer.fit_transform(df) alues based on other mere the relationship an be accurately modeled. r_model import gle column imputation</pre>	<pre>Handles missing values natively, learning the best direction during training import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Sample data with missing values X = np.array([[1, 2], [np.nan, 4], [3, 5]]) y = np.array([0, 1, 0]) # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and train XGBoost model = xgb.XGBClassifier() model.fit(X_train, y_train) # Predict y_pred = model.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred))</pre>
X_train = df_non_missing.drop('column_name', axis=1) y_train = df_non_missing['column_name'] X_missing = df_missing.drop('column_name', axis=1) regressor = LinearRegression() regressor.fit(X_train, y_train) df.loc[df['column_name'].isnull(), 'column_name'] = regressor.predict(X_missing)		2-bi-col)