Here’s the list of functions with their descriptions:
torch.abs(input)
– Returns the absolute value of each element in the input tensor.torch.ceil(input)
– Returns the smallest integer greater than or equal to each element in the input tensor (ceiling function).torch.floor(input)
– Returns the largest integer less than or equal to each element in the input tensor (floor function).torch.clamp(input, min=None, max=None)
– Clamps all elements in the input tensor to the range[min, max]
.torch.std(input, unbiased=True)
– Returns the standard deviation of all elements in the input tensor.torch.prod(input, dim=None)
– Returns the product of all elements in the input tensor or along the specified dimension.torch.unique(input, sorted=False, return_inverse=False)
– Returns the unique elements of the input tensor.
Examples:
torch.abs(input)
- Description: Returns the absolute value of each element in the input tensor.
- Example:
python a = torch.tensor([-1.5, 2.3, -3.7]) result = torch.abs(a) print(result)
Output:tensor([1.5000, 2.3000, 3.7000])
torch.ceil(input)
- Description: Returns the smallest integer greater than or equal to each element in the input tensor (ceiling function).
- Example:
python a = torch.tensor([1.2, 2.8, -3.5]) result = torch.ceil(a) print(result)
Output:tensor([ 2., 3., -3.])
torch.floor(input)
- Description: Returns the largest integer less than or equal to each element in the input tensor (floor function).
- Example:
python a = torch.tensor([1.2, 2.8, -3.5]) result = torch.floor(a) print(result)
Output:tensor([ 1., 2., -4.])
torch.clamp(input, min=None, max=None)
- Description: Clamps all elements in the input tensor into the range
[min, max]
. Ifmin
ormax
are not specified, they are ignored. - Example:
python a = torch.tensor([-1, 2, 3, 4, 5]) result = torch.clamp(a, min=0, max=4) print(result)
Output:tensor([0, 2, 3, 4, 4])
torch.std(input, unbiased=True)
- Description: Returns the standard deviation of all elements in the input tensor. By default, it uses the unbiased estimator.
- Example:
python a = torch.tensor([1.0, 2.0, 3.0, 4.0]) result = torch.std(a) print(result)
Output:tensor(1.2909)
torch.prod(input, dim=None)
- Description: Returns the product of all elements in the input tensor along the specified dimension
dim
. Ifdim
is not specified, it returns the product of all elements. - Example:
python a = torch.tensor([1, 2, 3, 4]) result = torch.prod(a) print(result)
Output:tensor(24)
torch.unique(input, sorted=False, return_inverse=False)
- Description: Returns the unique elements of the input tensor. If
sorted=True
, the output is sorted.return_inverse=True
returns an additional tensor showing the indices for reconstructing the input. - Example:
python a = torch.tensor([1, 2, 2, 3, 4, 4, 5]) result = torch.unique(a) print(result)
Output:tensor([1, 2, 3, 4, 5])
Discover more from Science Comics
Subscribe to get the latest posts sent to your email.