PyTorch basic computation function song

Here’s the list of functions with their descriptions:

  • torch.abs(input) – Returns the absolute value of each element in the input tensor.
  • torch.ceil(input) – Returns the smallest integer greater than or equal to each element in the input tensor (ceiling function).
  • torch.floor(input) – Returns the largest integer less than or equal to each element in the input tensor (floor function).
  • torch.clamp(input, min=None, max=None) – Clamps all elements in the input tensor to the range [min, max].
  • torch.std(input, unbiased=True) – Returns the standard deviation of all elements in the input tensor.
  • torch.prod(input, dim=None) – Returns the product of all elements in the input tensor or along the specified dimension.
  • torch.unique(input, sorted=False, return_inverse=False) – Returns the unique elements of the input tensor.

Examples:

  1. torch.abs(input)
  • Description: Returns the absolute value of each element in the input tensor.
  • Example:
    python a = torch.tensor([-1.5, 2.3, -3.7]) result = torch.abs(a) print(result)
    Output:
    tensor([1.5000, 2.3000, 3.7000])
  1. torch.ceil(input)
  • Description: Returns the smallest integer greater than or equal to each element in the input tensor (ceiling function).
  • Example:
    python a = torch.tensor([1.2, 2.8, -3.5]) result = torch.ceil(a) print(result)
    Output:
    tensor([ 2., 3., -3.])
  1. torch.floor(input)
  • Description: Returns the largest integer less than or equal to each element in the input tensor (floor function).
  • Example:
    python a = torch.tensor([1.2, 2.8, -3.5]) result = torch.floor(a) print(result)
    Output:
    tensor([ 1., 2., -4.])
  1. torch.clamp(input, min=None, max=None)
  • Description: Clamps all elements in the input tensor into the range [min, max]. If min or max are not specified, they are ignored.
  • Example:
    python a = torch.tensor([-1, 2, 3, 4, 5]) result = torch.clamp(a, min=0, max=4) print(result)
    Output:
    tensor([0, 2, 3, 4, 4])
  1. torch.std(input, unbiased=True)
  • Description: Returns the standard deviation of all elements in the input tensor. By default, it uses the unbiased estimator.
  • Example:
    python a = torch.tensor([1.0, 2.0, 3.0, 4.0]) result = torch.std(a) print(result)
    Output:
    tensor(1.2909)
  1. torch.prod(input, dim=None)
  • Description: Returns the product of all elements in the input tensor along the specified dimension dim. If dim is not specified, it returns the product of all elements.
  • Example:
    python a = torch.tensor([1, 2, 3, 4]) result = torch.prod(a) print(result)
    Output:
    tensor(24)
  1. torch.unique(input, sorted=False, return_inverse=False)
  • Description: Returns the unique elements of the input tensor. If sorted=True, the output is sorted. return_inverse=True returns an additional tensor showing the indices for reconstructing the input.
  • Example:
    python a = torch.tensor([1, 2, 2, 3, 4, 4, 5]) result = torch.unique(a) print(result)
    Output:
    tensor([1, 2, 3, 4, 5])


Discover more from Science Comics

Subscribe to get the latest posts sent to your email.

Leave a Reply

error: Content is protected !!