pandas function song – grouping the data

Function list:

  1. df.groupby('column'): Groups the DataFrame by the specified column(s), allowing you to apply aggregate functions like sum, mean, etc., to each group.
  2. df.pivot_table(values='value', index='column', columns='column2'): Creates a pivot table, summarizing data by grouping it by one or more index columns and computing aggregated values for the specified columns.
  3. df.resample('time_period'): Groups time-series data into specified time periods (e.g., daily, monthly) and allows applying aggregation functions on each group.
  4. df.rolling(window=3): Groups data into rolling windows of a specified size, enabling the computation of aggregate functions like moving averages over these windows.
  5. df.expanding(min_periods=1): Similar to rolling, this function groups data by expanding windows, allowing cumulative calculations as more data is included in each step.
  6. df.cumsum(): Groups data implicitly by its order and computes the cumulative sum across a DataFrame or Series, returning running totals for each group.
  7. df.cumprod(): Computes the cumulative product for each group in a DataFrame or Series, multiplying values as the group progresses.
  8. df.cut(df['column'], bins=3): Groups continuous data into discrete bins or intervals and allows you to analyze the data within each bin.
  9. df.qcut(df['column'], q=4): Similar to cut, this function divides data into quantile-based bins, creating equal-sized groups based on percentiles or quartiles.
  10. df.aggregate(['sum', 'mean']): Allows applying multiple aggregation functions (like sum, mean, etc.) to grouped data, either using groupby() or on the entire DataFrame.
  11. df.transform(lambda x: x - x.mean()): Applies a function to each group, returning a transformed DataFrame where the function (like centering by mean) is applied group-wise.

Example codes

Here are the updated examples, including a brief explanation of what each function does:

  1. df.groupby('column'): Groups the DataFrame by the specified column(s) and applies an aggregate function like sum.
   df = pd.DataFrame({'category': ['A', 'B', 'A', 'B'], 'value': [10, 20, 30, 40]})
   grouped = df.groupby('category').sum()
   print(grouped)
   # Groups the data by 'category' and sums the 'value' column for each group.

Output:

             value
   category       
   A             40
   B             60
  1. df.pivot_table(values='value', index='category', columns='sub_category'): Creates a pivot table to summarize data by grouping on index and columns.
   df = pd.DataFrame({'category': ['A', 'A', 'B', 'B'], 'sub_category': ['X', 'Y', 'X', 'Y'], 'value': [10, 20, 30, 40]})
   pivot = df.pivot_table(values='value', index='category', columns='sub_category')
   print(pivot)
   # Groups data by 'category' and 'sub_category' and calculates the sum of 'value'.

Output:

   sub_category     X     Y
   category                
   A              10.0  20.0
   B              30.0  40.0
  1. df.resample('M'): Groups time-series data by the specified time period (e.g., monthly) and applies an aggregate function like sum.
   df = pd.DataFrame({'date': pd.date_range('2023-01-01', periods=6, freq='D'), 'value': [1, 2, 3, 4, 5, 6]})
   df.set_index('date', inplace=True)
   resampled = df.resample('M').sum()
   print(resampled)
   # Resamples the data by month and calculates the sum of 'value' for each month.

Output:

             value
   date           
   2023-01-31    21
  1. df.rolling(window=3): Groups data into rolling windows of a specified size and computes aggregate functions like sum.
   df = pd.DataFrame({'value': [1, 2, 3, 4, 5]})
   rolling = df.rolling(window=3).sum()
   print(rolling)
   # Applies a rolling window of size 3 and calculates the sum for each window.

Output:

      value
   0    NaN
   1    NaN
   2    6.0
   3    9.0
   4   12.0
  1. df.expanding(min_periods=1): Expands the window size over the data and applies cumulative calculations, like sum.
   df = pd.DataFrame({'value': [1, 2, 3, 4, 5]})
   expanding = df.expanding(min_periods=1).sum()
   print(expanding)
   # Expands the window and calculates the cumulative sum at each step.

Output:

      value
   0      1
   1      3
   2      6
   3     10
   4     15
  1. df.cumsum(): Computes the cumulative sum of values across the DataFrame or Series.
   df = pd.DataFrame({'value': [1, 2, 3, 4, 5]})
   cumsum = df.cumsum()
   print(cumsum)
   # Calculates the cumulative sum of the 'value' column.

Output:

      value
   0      1
   1      3
   2      6
   3     10
   4     15
  1. df.cumprod(): Computes the cumulative product of values across the DataFrame or Series.
   df = pd.DataFrame({'value': [1, 2, 3, 4]})
   cumprod = df.cumprod()
   print(cumprod)
   # Calculates the cumulative product of the 'value' column.

Output:

      value
   0      1
   1      2
   2      6
   3     24
  1. df.cut(df['column'], bins=3): Groups continuous data into discrete bins.
   df = pd.DataFrame({'value': [1, 2, 3, 4, 5, 6, 7, 8, 9]})
   df['bins'] = pd.cut(df['value'], bins=3)
   print(df)
   # Divides the 'value' column into 3 equal-width bins.

Output:

      value         bins
   0      1  (0.992, 4.0]
   1      2  (0.992, 4.0]
   2      3  (0.992, 4.0]
   3      4  (0.992, 4.0]
   4      5    (4.0, 7.0]
   5      6    (4.0, 7.0]
   6      7    (4.0, 7.0]
   7      8    (7.0, 9.0]
   8      9    (7.0, 9.0]
  1. df.qcut(df['column'], q=4): Groups continuous data into quantile-based bins.
   df = pd.DataFrame({'value': [1, 2, 3, 4, 5, 6, 7, 8, 9]})
   df['quantiles'] = pd.qcut(df['value'], q=4)
   print(df)
   # Divides the 'value' column into 4 equal-sized quantile bins.

Output:

      value       quantiles
   0      1    (0.999, 3.5]
   1      2    (0.999, 3.5]
   2      3    (0.999, 3.5]
   3      4    (3.5, 5.5]
   4      5    (3.5, 5.5]
   5      6    (5.5, 7.5]
   6      7    (5.5, 7.5]
   7      8    (7.5, 9.0]
   8      9    (7.5, 9.0]
  1. df.aggregate(['sum', 'mean']): Applies multiple aggregate functions to the DataFrame.
   df = pd.DataFrame({'value1': [1, 2, 3], 'value2': [4, 5, 6]})
   aggregated = df.aggregate(['sum', 'mean'])
   print(aggregated)
   # Aggregates the data using 'sum' and 'mean' functions for each column.

Output:

          value1  value2
   sum       6.0    15.0
   mean      2.0     5.0
  1. df.transform(lambda x: x - x.mean()): Applies a transformation function to each group.
   df = pd.DataFrame({'group': ['A', 'A', 'B', 'B'], 'value': [10, 20, 30, 40]})
   transformed = df.groupby('group').transform(lambda x: x - x.mean())
   print(transformed)
   # Subtracts the mean of each group from the group's values.

Output:

      value
   0   -5.0
   1    5.0
   2   -5.0
   3    5.0


Discover more from Science Comics

Subscribe to get the latest posts sent to your email.

Leave a Reply

error: Content is protected !!