Python

PySpark: selecting and accessing data

The content outlines various PySpark functions used for data manipulation in DataFrames. Key functions include filtering with where(), limiting rows with limit(), returning distinct rows, dropping columns, and grouping by criteria. Each function includes a brief example, illustrating how to access, modify, and aggregate data effectively within PySpark.

Python

Pandas function song

A cute, catchy song on various Pandas functions applied to DataFrames. Key functions include sorting values, resetting the index, dropping columns and duplicates, sampling data, and handling missing values. Example codes illustrate each function’s output, demonstrating how to manipulate and visualize data effectively with Pandas.

error: Content is protected !!