Skip to content

Support Vector Machine + Python & R Codes

Support Vector Classifier (SVC) is a powerful algorithm for classification tasks, capable of handling linear and non-linear data using different kernel functions. It efficiently handles high-dimensional data for applications like image recognition and bioinformatics. Python and R codes demonstrate SVM usage for binary classification with breast cancer and mtcars datasets, respectively.

Logistic regression with L1 or L2 penalty with codes in Python and R

Logistic regression with L1 or L2 penalty adds regularization to prevent overfitting and improve model generalization. L1 penalty (Lasso) encourages sparsity in the model, making it suitable for datasets with many irrelevant features. L2 penalty (Ridge) retains all features with reduced importance. Python and R codes demonstrate implementation and evaluation of these regression techniques.

What’s classification

Classification organizes items based on criteria. In data, it involves sorting into categories. It’s manual or automated with algorithms. Used in science, business, and technology to analyze and predict based on data. Crucial in document categorization, image recognition, sentiment analysis, and spam filtering for efficient data organization and analysis.

Adjusted R squared

The coefficient of determination, or R-squared, measures how well an independent variable explains the variability of a dependent variable in a regression model. Its limitation lies in the fact that it does not decrease when a new feature is added, whether useful or not. Adjusted R-squared is an improvement, considering the number of predictors in a model, making it more reliable for assessing explanatory power.

Feature selection & Model Selection

Feature selection involves identifying and including essential variables in the model, possibly leading to improved performance and interpretability. Adjusted R-squared is a common metric for regression analysis, addressing overfitting by penalizing unnecessary variables and offering an accurate model representation.

Sum of Squares & coefficients of determination with Python & R codes

The coefficient of determination (R-squared) measures how well a model explains the variance of the response variable. In this example, Python and R are used to calculate R-squared for linear regression. Higher R-squared value and the plot indicate a good fit, demonstrating the effectiveness of the model.

error: Content is protected !!