machine learning in a random forest

Adjusted R squared

The coefficient of determination, or R-squared, measures how well an independent variable explains the variability of a dependent variable in a regression model. Its limitation lies in the fact that it does not decrease when a new feature is added, whether useful or not. Adjusted R-squared is an improvement, considering the number of predictors in a model, making it more reliable for assessing explanatory power.

machine learning in a random forest

Comparing forward, backward, stepwise feature selection

Forward selection adds features one by one, optimizing model performance but potentially missing the best subset. Backward selection starts with all features and removes the least significant, refining the model but being more computationally intensive. Stepwise selection combines both methods, adding or removing features for a balanced approach but can be complex.

machine learning in a random forest

Hyperparameter tuning by train-validation-test split – process & example

implementing Lasso regression with train-validation-test split and finding the optimal regularization parameter. In Python, it involves splitting the data, training Lasso model with different alpha values, finding the best alpha, retraining the model, and evaluating on the test set. In R, it includes data splitting, training Lasso models, finding the best lambda, retraining, and testing.

machine learning in a random forest

Grid search and train-validation-test split for hyperparameter tuning – intro

The training-validation-test split involves using the training set to fit the model, the validation set to tune hyperparameters, and the test set to evaluate performance. Python’s scikit-learn library can be used for this process, ensuring the model generalizes well to new data by evaluating it on unseen data and avoiding overfitting.

error: Content is protected !!